Aza-[4 + 2]-cycloaddition of benzocyclobutenones into isoquinolinone derivatives enabled by photoinduced regio-specific C–C bond cleavage

Aza-[4 + 2]-cycloaddition of benzocyclobutenones into isoquinolinone derivatives enabled by photoinduced regio-specific C–C bond cleavage

  • Chen, F., Wang, T. & Jiao, N. Recent advances in transition-metal-catalyzed functionalization of unstrained carbon–carbon bonds. Chem. Rev. 114, 8613–8661 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Souillart, L. & Cramer, N. Catalytic C–C bond activations via oxidative addition to transition metals. Chem. Rev. 115, 9410–9464 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murakami, M. & Ishida, N. Potential of metal-catalyzed C–C single bond cleavage for organic synthesis. J. Am. Chem. Soc. 138, 13759–13769 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fumagalli, G., Stanton, S. & Bower, J. F. Recent methodologies that exploit C–C single-bond cleavage of strained ring systems by transition metal complexes. Chem. Rev. 117, 9404–9432 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, D.-S., Park, W.-J. & Jun, C.-H. Metal–organic cooperative catalysis in C–H and C–C bond activation. Chem. Rev. 117, 8977–9015 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, F., Gou, T., Wang, B.-Q. & Shi, Z.-J. Catalytic activations of unstrained C–C bond involving organometallic intermediates. Chem. Soc. Rev. 47, 7078–7115 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, T. Synthetic applications of C−C bond activation reactions. Compr. Organomet. Chem. 12, 332–346 (2022).


    Google Scholar
     

  • Flores-Gaspar, A. & Martin, R. Recent advances in the synthesis and application of benzocyclobutenones and related compounds. Synthesis 45, 563–580 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Chen, P.-H. & Dong, G. Cyclobutenones and benzocyclobutenones: versatile synthons in organic synthesis. Chem. Eur. J. 22, 18290–18315 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, L. & Dong, G. Carbon‒carbon bond activation of ketones. Trends Chem. 2, 183–198 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Murakami, M. & Ishida, N. Cleavage of carbon–carbon σ-bonds of four-membered rings. Chem. Rev. 121, 264–299 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue, Y. & Dong, G. Deconstructive synthesis of bridged and fused rings via transition-metal-catalyzed “cut-and-sew” reactions of benzocyclobutenones and cyclobutanones. Acc. Chem. Res. 55, 2341–2354 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huffman, M. A., Liebeskind, L. S. & Pennington, W. T. Jr. Synthesis of metallacyclopentenones by insertion of rhodium into cyclobutenones. Organometallics 9, 2194–2196 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Lu, G., Fang, C., Xu, T., Dong, G. & Liu, P. Computational study of Rh-catalyzed carboacylation of olefins: ligand-promoted rhodacycle isomerization enables regioselective C–C bond functionalization of benzocyclobutenones. J. Am. Chem. Soc. 137, 8274–8283 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, Q., Wang, B., Yu, H. & Fu, Y. Mechanistic study on ligand-controlled Rh(I)-catalyzed coupling reaction of alkene-benzocyclobutenone. ACS Catal. 5, 4881–4889 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Yang, S., Xu, Y. & Li, J. Theoretical study of nickel-catalyzed proximal C–C cleavage in benzocyclobutenones with insertion of 1,3-diene: origin of selectivity and role of ligand. Org. Lett. 18, 6244–6247 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou, H., Wang, Z.-L. & Huang, G. Mechanism and origins of the chemo- and regioselectivities in nickel-catalyzed intermolecular cycloadditions of benzocyclobutenones with 1,3-dienes. Chem. Eur. J. 23, 12593–12603 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Z.-Y. et al. Mechanism and origins of chemo- and regioselectivities of Pd-catalyzed intermolecular σ-bond exchange between benzocyclobutenones and silacyclobutanes: a computational study. Organometallics 37, 592–602 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, T., Ko, H. M., Savage, N. A. & Dong, G. Highly enantioselective Rh-catalyzed carboacylation of olefins: efficient syntheses of chiral poly-fused rings. J. Am. Chem. Soc. 134, 20005–20008 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, L., Xu, T., Li, H. & Dong, G. Enantioselective Rh-catalyzed carboacylation of C=N bonds via C–C activation of benzocyclobutenones. J. Am. Chem. Soc. 138, 369–374 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, L., Chen, M. & Dong, G. Concise synthesis of (−)-cycloclavine and (−)-5-epi-cycloclavine via asymmetric C–C activation. J. Am. Chem. Soc. 140, 9652–9658 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, S.-H., Prichina, A. Y. & Dong, G. Deconstructive asymmetric total synthesis of morphine-family alkaloid (−)-thebainonea. Angew. Chem. Int. Ed. 60, 13057–13064 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ambler, B. R. et al. Enantioselective ruthenium-catalyzed benzocyclobutenone–ketol cycloaddition: merging C–C bond activation and transfer hydrogenative coupling for type II polyketide construction. J. Am. Chem. Soc. 140, 9091–9094 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huynh, N. O., Hodík, T. & Krische, M. J. Enantioselective transfer hydrogenative cycloaddition unlocks the total synthesis of SF2446 B3: An aglycone of arenimycin and SF2446 type II polyketide antibiotics. J. Am. Chem. Soc. 145, 17461–17467 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, B. et al. Catalytic enantioselective synthesis of 3,4-polyfused oxindoles with quaternary all-carbon stereocenters: a Rh-catalyzed C–C activation approach. Org. Lett. 20, 7689–7693 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Divergent Rh catalysis: asymmetric dearomatization versus C–H activation initiated by C–C activation. ACS Catal. 13, 4873–4881 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bender, M., Turnbull, B. W. H., Ambler, B. R. & Krische, M. J. Ruthenium-catalyzed insertion of adjacent diol carbon atoms into C–C bonds: entry to type II polyketides. Science 357, 779–781 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, H. et al. Divergent coupling of benzocyclobutenones with indoles via C−H and C−C activations. Angew. Chem. Int. Ed. 59, 23537–23543 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Guo, J.-H. et al. Site-selective C–C cleavage of benzocyclobutenones enabled by a blocking strategy using nickel catalysis. Angew. Chem. Int. Ed. 60, 19079–19084 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, T. & Dong, G. Rhodium-catalyzed regioselective carboacylation of olefins: a C−C bond activation approach for accessing fused-ring systems. Angew. Chem. Int. Ed. 51, 7567–7571 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chen, P.-H., Xu, T. & Dong, G. Divergent syntheses of fused β-naphthol and indene scaffolds by rhodium-catalyzed direct and decarbonylative alkyne–benzocyclobutenone couplings. Angew. Chem. Int. Ed. 53, 1674–1678 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, T., Savage, N. A. & Dong, G. Rhodium(I)-catalyzed decarbonylative spirocyclization through C–C bond cleavage of benzocyclobutenones: An efficient approach to functionalized spirocycles. Angew. Chem. Int. Ed. 53, 1891–1895 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Xu, T. & Dong, G. Coupling of sterically hindered trisubstituted olefins and benzocyclobutenones by C–C activation: total synthesis and structural revision of cycloinumakiol. Angew. Chem. Int. Ed. 53, 10733–10736 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Sun, T. et al. Rhodium(I)-catalyzed carboacylation/aromatization cascade initiated by regioselective C−C activation of benzocyclobutenones. Angew. Chem. Int. Ed. 57, 2859–2863 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, Z. et al. Cobalt-catalyzed intramolecular alkyne/benzocyclobutenone coupling: C–C bond cleavage via a tetrahedral dicobalt intermediate. ACS Catal. 8, 845–849 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin, Y., Zhan, J.-L., Shan, T.-T. & Xu, T. Total synthesis of penta-Me amurensin H and diptoindonesin G featuring a Rh-catalyzed carboacylation/aromatization cascade enabled by C−C activation. Tetrahedron Lett. 60, 925–927 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y., Shen, S., Fang, H. & Xu, T. Total synthesis of galanthamine and lycoramine featuring an early-stage C–C and a late-stage dehydrogenation via C–H activation. Org. Lett. 22, 1244–1248 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J., Wang, X. & Xu, T. Regioselective activation of benzocyclobutenones and dienamides lead to anti-bredt bridged-ring systems by a [4+4] cycloaddition. Nat. Commun. 12, 3022 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y., Ma, P., Ma, N. & Wang, J. Ligand-controlled nickel-catalyzed reactions of benzocyclobutenones with alkynyltrifluoroborates: diverse construction of polysubstituted naphthols. Org. Lett. 25, 3527–3532 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Reversing site-selectivity in formal cross-dimerization of benzocyclobutenones and silacyclobutanes. CCS Chem. 5, 1753–1762 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, C. et al. Type I [4σ+4π] versus [4σ+4π−1] cycloaddition to access medium-sized carbocycles and discovery of a liver X receptor β-selective ligand. Angew. Chem. Int. Ed. 63, e202405838 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Chen, P.-H., Sieber, J., Senanayake, C. H. & Dong, G. Rh-catalyzed reagent-free ring expansion of cyclobutenones and benzocyclobutenones. Chem. Sci. 6, 5440–5445 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Juliá-Hernández, F., Ziadi, A., Nishimura, A. & Martin, R. Nickel-catalyzed chemo-, regio- and diastereoselective bond formation through proximal C-C cleavage of benzocyclobutenones. Angew. Chem. Int. Ed. 54, 9537–9541 (2015).

    Article 

    Google Scholar
     

  • Okumura, S., Sun, F., Ishida, N. & Murakami, M. Palladium-catalyzed intermolecular exchange between C–C and C–Si σ-bonds. J. Am. Chem. Soc. 139, 12414–12417 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, R. et al. A ring expansion strategy towards diverse azaheterocycles. Nat. Chem. 13, 1006–1016 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ochi, S., Zhang, Z., Xia, Y. & Dong, G. Rhodium-catalyzed (4+1) cycloaddition between benzocyclobutenones and styrene-type alkenes. Angew. Chem. Int. Ed. 61, e202202703 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hoffmann, N. Photochemical reactions as key steps in organic synthesis. Chem. Rev. 108, 1052–1103 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xuan, J. & Xiao, W.-J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed. 51, 6828–6838 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schultz, D. M. & Yoon, T. P. Solar synthesis: prospects in visible light photocatalysis. Science 343, 1239176 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brimioulle, R., Lenhart, D., Maturi, M. M. & Bach, T. Enantioselective catalysis of photochemical reactions. Angew. Chem. Int. Ed. 54, 3872–3890 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strieth-Kalthoff, F., James, M. J., Teders, M., Pitzer, L. & Glorius, F. Energy transfer catalysis mediated by visible light: principles, applications, directions. Chem. Soc. Rev. 47, 7190–7202 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Q.-Q., Zou, Y.-Q., Lu, L.-Q. & Xiao, W.-J. Visible-light-induced organic photochemical reactions through energy-transfer pathways. Angew. Chem. Int. Ed. 58, 1586–1604 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Strieth-Kalthoff, F. & Glorius, F. Triplet energy transfer photocatalysis: unlocking the next level. Chem 6, 1888–1903 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yu, X.-Y., Chen, J.-R. & Xiao, W.-J. Visible light-driven radical-mediated C–C bond cleavage/functionalization in organic synthesis. Chem. Rev. 121, 506–561 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Melchiorre, P. Introduction: photochemical catalytic processes. Chem. Rev. 122, 1483–1484 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, L. Z., Liu, X. H., Cao, W. D. & Feng, X. M. Recent advances in visible light-induced asymmetric transformations of carbonyl compounds into chiral alcohols. ChemCatChem 15, e202300893 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dutta, S., Erchinger, J. E., Strieth-Kalthoff, F., Kleinmans, R. & Glorius, F. Energy transfer photocatalysis: exciting modes of reactivity. Chem. Soc. Rev. 53, 1068–1089 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Norrish, R. G. W. & Kirkbride, F. W. 204. Primary photochemical processes. Part I. The decomposition of formaldehyde. J. Chem. Soc., 1518–1530 (1932).

  • Norrish, R. G. W. & Bamford, C. H. Photo-decomposition of aldehydes and ketones. Nature 140, 195–196 (1937).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dantas, J. A., Correia, J. T. M., Paixão, M. W. & Corrêa, A. G. Photochemistry of carbonyl compounds: application in metal-free reactions. ChemPhotoChem 3, 506–520 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cava, M. P. & Spangler, R. J. 2-(Carbomethoxy)benzocyclobutenone. Synthesis of a photochemically sensitive small-ring system by a pyrolytic wolff rearrangement. J. Am. Chem. Soc. 89, 4550–4551 (1967).

    Article 
    CAS 

    Google Scholar
     

  • Ng, D., Yang, Z. & Garcia-Garibay, M. A. Total synthesis of (±)-herbertenolide by stereospecific formation of vicinal quaternary centers in a crystalline ketone. Org. Lett. 6, 645–647 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicolaou, K. C., Gray, D. L. F. & Tae, J. Total synthesis of hamigerans and analogues thereof. Photochemical generation and Diels−Alder trapping of hydroxy-o-quinodimethanes. J. Am. Chem. Soc. 126, 613–627 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okada, M. et al. Photocatalytic one-pot synthesis of homoallyl ketones via a Norrish type I reaction of cyclopentanones. J. Org. Chem. 80, 9365–9369 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schiess, P., Eberle, M., Huys-Francotte, M. & Wirz, J. Thermal addition reactions to benzocyclobutenones studied by flash photolysis. Tetrahedron Lett. 25, 2201–2204 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. Y., Suzzarini, L. & Gao, J. P. Thermal reactions of benzocyclobutenone with alcohols. Tetrahedron Lett. 38, 5745–5746 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Wurm, T., Turnbull, B. W. H., Ambler, B. R. & Krische, M. J. Thermal hetero-Diels–Alder reaction of benzocyclobutenones with isatins to form 2-oxindole spirolactones. J. Org. Chem. 82, 13751–13755 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnold, D. R., Hedaya, E., Merritt, V. Y., Karnischky, L. A. & Kent, M. E. Benzocyclobutenone: pyrolysis and photochemistry. Tetrahedron Lett. 13, 3917–3920 (1972).

    Article 

    Google Scholar
     

  • Krantz, A. Laser ultraviolet irradiation of α-pyrone. Extremely rapid isomerization of a transient ketene. J. Am. Chem. Soc. 96, 4992–4993 (1974).

    Article 
    CAS 

    Google Scholar
     

  • Hacker, N. P. & Turro, N. J. Low temperature photolysis of benzocyclobutanone and 2,2-dihydrocyclobuta[1]phenanthrenone: Evidence for photochromic behavior. J. Photochem. 22, 131–135 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Bally, T. & Michalak, J. Photochemistry and radiation chemistry of benzocyclobutenone: formation of an o-quinoid ketene and its radical cation. J. Photochem. Photobiol. A 69, 185–190 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Chou, C.-H., Wu, C.-C. & Chen, W.-K. Synthesis of pyrido[b]cyclobuten-5-one and 1-azafulvenallene by flash vacuum pyrolysis of 3-chloroformyl-2-methylpyridine. Tetrahedron Lett. 36, 5065–5068 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Chiang, Y., Kresge, A. J. & Zhan, H.-Q. Generation of 6-methylene-2,4-cyclohexadienylidene ketene by flash photolysis of benzocyclobutenone in aqueous solution and study of the reactions of this ketene in that medium. Can. J. Chem. 81, 607–611 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heravi, M. M. & Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: an overview. RSC Adv. 10, 44247–44311 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lang, K. D., Kaur, R., Arora, R., Saini, B. & Arora, S. Nitrogen-containing heterocycles as anticancer agents: an overview. Anticancer Agents Med. Chem. 20, 2150–2168 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, A. et al. Nitrogen containing heterocycles as anticancer agents: a medicinal chemistry perspective. Pharmaceuticals 16, 299 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, Z. D., Zhu, S. B., Liu, Y. B. & Feng, X. M. Photoinduced chemo-, site- and stereoselective α-C(sp3)−H functionalization of sulfides. Angew. Chem. Int. Ed. 61, e202203374 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hou, L. Z. et al. Enantioselective radical addition to ketones through Lewis acid-enabled photoredox catalysis. J. Am. Chem. Soc. 144, 22140–22149 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, L. K. et al. NickelII-catalyzed asymmetric photoenolization/Mannich reaction of (2-alkylphenyl) ketones. Chem. Sci. 13, 8576–8582 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan, T. Y. et al. Chiral Lewis acid-catalyzed Norrish type II cyclization to synthesize α-oxazolidinones via enantioselective protonation. CCS Chem. 5, 2101–2110 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yang, L. K. et al. Catalytic asymmetric photocycloaddition of triplet aldehydes with benzocyclobutenones. CCS Chem. 135, 11473-6 (2024).

  • Hou, L. Z. et al. Catalytic asymmetric dearomative [2 + 2] photocycloaddition/ring-expansion sequence of indoles with diversified alkenes. J. Am. Chem. Soc. 146, 23457–23466 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leitao Da-Cunha, E. V., Fechine, L. M., Guedes, D. N., Barbosa-Filho, J. M. & Sobral Da Silva, M. Protoberberine alkaloids. alkaloids: Chem. Biol. 62, 1–75 (2005).


    Google Scholar
     

  • Yu, L.-L. et al. Protoberberine isoquinoline alkaloids from arcangelisia gusanlung. Molecules 19, 13332–13341 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X. H., Lin, L. L. & Feng, X. M. Chiral N,N’-dioxides: new ligands and organocatalysts for catalytic asymmetric reactions. Acc. Chem. Res. 44, 574–587 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. H., Zheng, H. F., Xia, Y., Lin, L. L. & Feng, X. M. Asymmetric cycloaddition and cyclization reactions catalyzed by chiral N,N’-dioxide-metal complexes. Acc. Chem. Res. 50, 2621–2631 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, D.-F. & Gong, L.-Z. Feng chiral N,N’-dioxide ligands: uniqueness and impacts. Org. Chem. Front. 10, 3676–3683 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dong, S. X., Cao, W. D., Pu, M. P., Liu, X. H. & Feng, X. M. Ligand acceleration in chiral Lewis acid catalysis. CCS Chem. 5, 2717–2735 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xu, N. et al. Iron-catalyzed asymmetric α-alkylation of 2-acylimidazoles via dehydrogenative radical cross-coupling with alkanes. Angew. Chem. Int. Ed. 62, e202314256 (2023).


    Google Scholar
     

  • Wang, K. X. et al. Asymmetric catalytic ring-expansion of 3-methyleneazetidines with α-diazo pyrazoamides towards proline-derivatives. Angew. Chem. Int. Ed. 62, e202307249 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chen, M. et al. Regioselective and asymmetric allylic alkylation of vinyl epoxides for the construction of allylic alcohols via synergistic catalysis. Sci. China Chem. 67, 542–550 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Padwa, A. Photochemistry of the carbon-nitrogen double bond. Chem. Rev. 77, 37–68 (1977).

    Article 
    CAS 

    Google Scholar
     

  • Pratt, A. C. The photochemistry of imines. Chem. Soc. Rev. 6, 63–81 (1977).

    Article 
    CAS 

    Google Scholar
     

  • Kandappa, S. K., Valloli, L. K., Ahuja, S., Parthiban, J. & Sivaguru, J. Taming the excited state reactivity of imines – from non-radiative decay to aza Paternò–Büchi reaction. Chem. Soc. Rev. 50, 1617–1641 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • CCDC: 2293174 (E1), contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

  • Kessar, S. V., Singh, P., Vohra, R., Kaur, N. P. & Venugopal, D. Facile generation and trapping of α-oxo-o-quinodimethanes: Synthesis of 3-aryl-3,4-dihydroisocoumarins and protoberberines. J. Org. Chem. 57, 6716–6720 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *